
  

Graph Theory
Part One



  

Outline for Today

● Graphs and Digraphs
● Two fundamental mathematical structures.

● Graphs Meet FOL
● Building visual intuitions.

● Independent Sets and Vertex Covers
● Two structures in graphs.



  

Graphs and Digraphs
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Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/
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What's in Common

● Each of these structures consists of
● a collection of objects and
● links between those objects.

● Goal: find a general framework for 
describing these objects and their 
properties.



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.
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A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or 
vertices) connected by edges (or arcs)

Edges



  

Some graphs are directed.
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Some graphs are undirected.



  

Graphs and Digraphs

● An undirected graph is one where edges link 
nodes, with no endpoint preferred over the other.

● A directed graph (or digraph) is one where 
edges have an associated direction.

● (There’s something called a mixed graph that 
allows for both, but they’re fairly uncommon and 
we won’t talk about them.)

● Unless specified otherwise:

  ☞ “Graph” means “undirected graph”  ☜



  

Formalizing Graphs

● How might we define a graph 
mathematically?

● We need to specify
● what the nodes in the graph are, and
● which edges are in the graph.

● The nodes can be pretty much anything.
● What about the edges?



  

Formalizing Graphs

● An unordered pair is a set {a, b} of two elements 
a ≠ b. (Remember that sets are unordered.)
● For example, {0, 1} = {1, 0}

● An undirected graph is an ordered pair G = (V, E), 
where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of nodes 

drawn from V.
● A directed graph (or digraph) is an ordered pair 

G = (V, E), where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are ordered pairs of nodes 

drawn from V.



  

● An unordered pair is a set {a, b} of two elements a ≠ b.
● An undirected graph is an ordered pair G = (V, E), where

● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of nodes drawn from V.

A

C

B

D

A

C

B

D

A

C

B

D

A

C

B

D

ABBBC

How many of these drawings are of valid undirected graphs?

Respond at pollev.com/zhenglian740



  

Self-Loops

● An edge from a node to itself is called a self-loop.
● In (undirected) graphs, self-loops are generally 

not allowed.
● Can you see how this follows from the definition?

● In digraphs, self-loops are generally allowed 
unless specified otherwise.

✓×



  

The Great Graph Gallery



  

Is this formula true about this graph?
 

∀u ∈ V. ∃v ∈ V. {u, v} ∈ E

+ ≈

⬠☜×

○△

꩜

□
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“for any node u”
“there exists a node 
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∀u ∈ V. ∃v ∈ V. {u, v} ∈ E

+ ≈

⬠☜×

○△

꩜

□

“for any node u”
“there exists a node 

v”
“where u and v are 

adjacent”



  

Is this formula true about this graph?
 

∃u ∈ V. ∀v ∈ V. {u, v} ∈ E

+

≈

⬠☜

꩜

Respond at 
pollev.com/zhenglian740



  

Is this formula true about this graph?
 

∃u ∈ V. ∀v ∈ V. {u, v} ∈ E

Is this formula true about this graph?
 

∃u ∈ V. ∀v ∈ V. {u, v} ∈ E

+

≈

⬠☜

꩜
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Walks, Paths, and Reachability



  

CAT SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge 
between them.
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Two nodes are called adjacent if there is an edge 
between them.

CAT



  

Using our Formalisms

● Let G = (V, E) be an (undirected) graph.
● Intuitively, two nodes are adjacent if they're 

linked by an edge.
● Formally speaking, we say that two nodes 

u, v ∈ V are adjacent if we have {u, v} ∈ E.
● There isn’t an analogous notion for directed 

graphs. We usually just say “there’s an edge 
from u to v” as a way of reading (u, v) ∈ E 
aloud.
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A walk in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.
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A walk in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

(This walk has length 
10, but visits 11 

cities.)
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nodes or edges except the 
first/last node.
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A cycle in a graph is a closed 
walk that does not repeat any 
nodes or edges except the 
first/last node.

What is the length
of the longest

walk in this graph?
Path in this graph?

Closed walk?
Cycle?
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node u if there is a path from u 
to v.

A path in a graph is walk that 
does not repeat any nodes.
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(Barstow isn’t reachable 
from SF after these road 

closures.)

A node v is reachable from a 
node u if there is a path from u 
to v.

A path in a graph is walk that 
does not repeat any nodes.
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A graph G is called connected 
if all pairs of distinct nodes in 
G are reachable.

A node v is reachable from a 
node u if there is a path from u 
to v.

A path in a graph is walk that 
does not repeat any nodes.
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(This graph is not 
connected.)

A graph G is called connected 
if all pairs of distinct nodes in 
G are reachable.

A node v is reachable from a 
node u if there is a path from u 
to v.

A path in a graph is walk that 
does not repeat any nodes.
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A graph G is called connected 
if all pairs of distinct nodes in 
G are reachable.

A node v is reachable from a 
node u if there is a path from u 
to v.

A path in a graph is walk that 
does not repeat any nodes.

A connected component (or 
CC) of G is a maximal set of 
mutually reachable nodes.



  

Fun Facts

● Here’s a collection of useful facts about graphs that 
you can take as a given.
● Theorem: If G = (V, E) is a graph and u, v ∈ V, then there is 

a path from u to v if and only if there’s a walk from u to v.
● Theorem: If G is a graph and C is a cycle in G, then C’s 

length is at least three and C contains at least three nodes.
● Theorem: If G = (V, E) is a graph, then every node in V 

belongs to exactly one connected component of G.
● Theorem: If G = (V, E) is a graph, then G is connected if 

and only if G has exactly one connected component.
● Looking for more practice working with formal 

definitions? Prove these results!



  

Time-Out for Announcements!



  

Problem Set 1 Graded

Pro tips when reading a grading distribution:
 

1. Standard deviations are malicious lies. Ignore them.
2. The average score is a malicious lie. Ignore it.
3. Raw scores are malicious lies. Ignore them.

75th Percentile: 44/49

50th Percentile: 40/49

25th Percentile: 30/49



  

Problem Set 1 Graded

“Great job! Look over your feedback 
for some tips on how to tweak things 

for next time.”

75th Percentile: 44/49

50th Percentile: 40/49

25th Percentile: 30/49



  

Problem Set 1 Graded

“You’re almost there! Review the 
feedback on your submission and see 

what to focus on for next time.”

75th Percentile: 44/49

50th Percentile: 40/49

25th Percentile: 30/49



  

Problem Set 1 Graded

“Looks like something hasn’t quite clicked yet. Review your feedback and ask 
us questions when you have them. Get in touch with us and stop by office 

hours to get some extra feedback and advice. Don’t get discouraged – you can 
do this!”

75th Percentile: 44/49

50th Percentile: 40/49

25th Percentile: 30/49



  

Problem Set Three

● Problem Set Two was due today at 
5:30PM.

● Problem Set Three goes out today. It’s 
due next Friday at 5:30PM.

● As always, ping us if you need help 
working on this one: post on EdStem or 
stop by office hours.



  

Preparing for the Exam

● We’ve posted a “Preparing for the Exam” 
page on the course website with full 
details and logistics.

● It also includes advice from former 
CS103 students about how to do well 
here.

● Check it out – there are tons of goodies 
there!



  

Practice Midterms

● We’ve also posted two practice midterms. These 
midterms were from the previous summer quarters, 
so they should approximate the difficulty and 
structure of the upcoming midterm.

● Our recommendation: 
● Sometime during week 4, sit down and take Practice 

Midterm 1 as if it were the actual exam.
● Identify any gaps in your understanding, and 

supplement with the extra practice problems as needed.
● Sometime during week 5 (before the real exam), sit 

down and take Practice Midterm 2.
● Please do not read the solutions to a problem until you 

have worked through it.



  

Back to CS103!



  

Independent Sets and Vertex Covers



  

Two Motivating Problems



  

Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.
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Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.



  Choose at least one endpoint of each edge.
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  Choose at least one endpoint of each edge.



  

Vertex Covers

● Let G = (V, E) be an undirected graph. A vertex 
cover of G is a set C ⊆ V such that the following 
statement is true:

∀x ∈ V. ∀y ∈ V. ({x, y} ∈ E → (x ∈ C ∨ y ∈ C))

(“Every edge has at least one endpoint in C.”)
● Intuitively speaking, a vertex cover is a set formed 

by picking at least one endpoint of each edge in the 
graph.

● Vertex covers have applications to placing 
streetlights/benches/security guards, as well as in 
gene sequencing, machine learning, and 
combinatorics.



  

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.
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Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.



  

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.



  Choose a set of nodes, no two of which are adjacent.



  

Independent Sets

● If G = (V, E) is an (undirected) graph, 
then an independent set in G is a set 
I ⊆ V such that

∀u ∈ I. ∀v ∈ I. {u, v} ∉ E.

(“No two nodes in I are adjacent.”)
● Independent sets have applications to 

resource optimization, conflict 
minimization, error-correcting codes, 
cryptography, and more.



  

A Connection



  Independent sets and vertex covers are related.



  Independent sets and vertex covers are related.
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■ What’s special about
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Theorem: Let G = (V, E) be a graph and
let C ⊆ V be a set. Then C is a vertex cover of G if

and only if V – C is an independent set in G.
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∀x ∈ V – C.

    ∀y ∈ V – C.

        {x, y} ∉ E.

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be 
a set. If C is a vertex cover of G, then

V – C is an independent set in G.
What We’re Assuming What We Need To Show

G is a graph.

C is a vertex cover of G.

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E →
    u ∈ C   ∨   v ∈ C
)

V – C is an independent set in G.



  

∀x ∈ V – C.

    ∀y ∈ V – C.

        {x, y} ∉ E.

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be 
a set. If C is a vertex cover of G, then

V – C is an independent set in G.
What We’re Assuming What We Need To Show

G is a graph.

C is a vertex cover of G.

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E →
    u ∈ C   ∨   v ∈ C
)

V – C is an independent set in G.

We’re assuming a universally-
quantified statement. That means 
we don’t do anything right now 

and instead wait for an edge to 
present itself.

We need to prove a universally-
quantified statement. We’ll ask 

the reader to pick arbitrary 
choices of x and y for us to work 

with.
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x ∈ V – C.

y ∈ V – C.
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Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is a vertex cover of G, then V – C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V – C is an independent set of G. To do so, pick any
nodes x, y ∈ V – C; we will show that {x, y} ∉ E.

Suppose for the sake of contradiction that {x, y} ∈ E.
Because x, y ∈ V – C, we know that x ∉ C and y ∉ C.
However, since C is a vertex cover of G and {x, y} ∈ E,
we also see that x ∈ C or y ∈ C, contradicting our
previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} ∉ E, as required. ■
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There’s no need to 
introduce G or C here. 

That’s done in the statement 
of the lemma itself.
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Taking Negations

● What is the negation of this statement, 
which says “C is a vertex cover?”

● This says “there is an edge where both 
endpoints aren’t in C.”

∀u ∈ C. ∀v ∈ C. ({u, v} ∈ E → 
    u ∈ C    ∨    v ∈ C
)

Respond at pollev.com/zhenglian740
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● What is the negation of this statement, 
which says “C is a vertex cover?”

● This says “there is an edge where both 
endpoints aren’t in C.”
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Taking Negations

● What is the negation of this statement, 
which says “C is a vertex cover?”

● This says “there is an edge where both 
endpoints aren’t in C.”

∃u ∈ C. ∃v ∈ C. ({u, v} ∈ E ∧
    u ∉ C    ∧    v ∉ C
)



  

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be 
a set. If C is not a vertex cover of G, then

V – C is not an independent set in G.
What We’re Assuming What We Need To Show

G is a graph.

C is a not a vertex cover of G.

∃u ∈ V. ∃v ∈ V. ({u, v} ∈ E ∧
    u ∉ C   ∧   v ∉ C
)

V – C is not an ind. set in G.

∃x ∈ V – C.

    ∃y ∈ V – C.

        {x, y} ∈ E.
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x and y. We’re on a scavenger hunt!
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Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be 
a set. If C is not a vertex cover of G, then
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Any ideas about what 
we should pick x and 

y to be?
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Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is not a vertex cover of G, then V – C is not an
independent set of G. 

Proof: Assume C is not a vertex cover of G. We need to
show that V – C is not an independent set of G.

Since C is not a vertex cover of G, we know that there
exists nodes x, y ∈ V where {x, y} ∈ E, where x ∉ C, and
where y ∉ C. Because x ∈ V and x ∉ C, we know that
x ∈ V – C. Similarly, we see that y ∈ V – C.

This means that {x, y} ∈ E, that x ∈ V – C, and that
y ∈ V – C, and therefore that V – C is not an independent
set of G, as required. ■
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Recap for Today

● A graph is a structure for representing items 
that may be linked together. Digraphs 
represent that same idea, but with a 
directionality on the links.

● Graphs can’t have self-loops; digraphs can.
● Vertex covers and independent sets are 

useful tools for modeling problems with 
graphs.

● The complement of a vertex cover is an 
independent set, and vice-versa.



  

Next Time

● The Pigeonhole Principle
● A simple, powerful, versatile theorem.

● Graph Theory Party Tricks
● Applying math to graphs of people!
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