

Graph Theory
Part One

Outline for Today

● Graphs and Digraphs
● Two fundamental mathematical structures.

● Graphs Meet FOL
● Building visual intuitions.

● Independent Sets and Vertex Covers
● Two structures in graphs.

Graphs and Digraphs

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/
Ethanol2.gif

https://xkcd.com/1195/

http://www.prospectmagazine.co.uk/wp-content/uploads/2009/09/163_taylor2.jpg

What's in Common

● Each of these structures consists of
● a collection of objects and
● links between those objects.

● Goal: find a general framework for
describing these objects and their
properties.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or
vertices) connected by edges (or arcs)

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or
vertices) connected by edges (or arcs)

Nodes

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or
vertices) connected by edges (or arcs)

Edges

Some graphs are directed.

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

Graphs and Digraphs

● An undirected graph is one where edges link
nodes, with no endpoint preferred over the other.

● A directed graph (or digraph) is one where
edges have an associated direction.

● (There’s something called a mixed graph that
allows for both, but they’re fairly uncommon and
we won’t talk about them.)

● Unless specified otherwise:

 ☞ “Graph” means “undirected graph” ☜

Formalizing Graphs

● How might we define a graph
mathematically?

● We need to specify
● what the nodes in the graph are, and
● which edges are in the graph.

● The nodes can be pretty much anything.
● What about the edges?

Formalizing Graphs

● An unordered pair is a set {a, b} of two elements
a ≠ b. (Remember that sets are unordered.)
● For example, {0, 1} = {1, 0}

● An undirected graph is an ordered pair G = (V, E),
where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of nodes

drawn from V.
● A directed graph (or digraph) is an ordered pair

G = (V, E), where
● V is a set of nodes, which can be anything, and
● E is a set of edges, which are ordered pairs of nodes

drawn from V.

● An unordered pair is a set {a, b} of two elements a ≠ b.
● An undirected graph is an ordered pair G = (V, E), where

● V is a set of nodes, which can be anything, and
● E is a set of edges, which are unordered pairs of nodes drawn from V.

A

C

B

D

A

C

B

D

A

C

B

D

A

C

B

D

ABBBC

How many of these drawings are of valid undirected graphs?

Respond at pollev.com/zhenglian740

Self-Loops

● An edge from a node to itself is called a self-loop.
● In (undirected) graphs, self-loops are generally

not allowed.
● Can you see how this follows from the definition?

● In digraphs, self-loops are generally allowed
unless specified otherwise.

✓×

The Great Graph Gallery

Is this formula true about this graph?

∀u ∈ V. ∃v ∈ V. {u, v} ∈ E

+ ≈

⬠☜×

○△

꩜

□

∀u ∈ V. ∃v ∈ V. {u, v} ∈ E

+ ≈

⬠☜×

○△

꩜

□

∀u ∈ V. ∃v ∈ V. {u, v} ∈ E

+ ≈

⬠☜×

○△

꩜

□

“for any node u”

∀u ∈ V. ∃v ∈ V. {u, v} ∈ E

+ ≈

⬠☜×

○△

꩜

□

“for any node u”
“there exists a node

v”

∀u ∈ V. ∃v ∈ V. {u, v} ∈ E

+ ≈

⬠☜×

○△

꩜

□

“for any node u”
“there exists a node

v”
“where u and v are

adjacent”

Is this formula true about this graph?

∃u ∈ V. ∀v ∈ V. {u, v} ∈ E

+

≈

⬠☜

꩜

Respond at
pollev.com/zhenglian740

Is this formula true about this graph?

∃u ∈ V. ∀v ∈ V. {u, v} ∈ E

Is this formula true about this graph?

∃u ∈ V. ∀v ∈ V. {u, v} ∈ E

+

≈

⬠☜

꩜

u

v

Walks, Paths, and Reachability

CAT SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

CAT SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

CAT SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

RATSAT

MAT

CAN

SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

CAT

Using our Formalisms

● Let G = (V, E) be an (undirected) graph.
● Intuitively, two nodes are adjacent if they're

linked by an edge.
● Formally speaking, we say that two nodes

u, v ∈ V are adjacent if we have {u, v} ∈ E.
● There isn’t an analogous notion for directed

graphs. We usually just say “there’s an edge
from u to v” as a way of reading (u, v) ∈ E
aloud.

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

From

To

SLC

LA

SD

But

Mon

LV

Bar Flag

Nog

Phoe

SF Sac

Port

Sea

From

To

SF, Sac, Port, Sea

LA

SD

But

Mon

LV

Bar Flag

Nog

Phoe

SLCSF Sac

Port

Sea

From

To

SF, Sac, SLC, Port, Sea

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To
A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To
A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To
A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

(This walk has length
10, but visits 11

cities.)

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SF Sac

Mon

LV

Bar Flag

LA

SD Nog

Phoe

Port

Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SLC

Sea, But, SLC, Port, Sea

From/To

Flag

SF

SD Nog

Phoe

Sac

Mon

LV

Bar

LA

Port

Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SLC

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

From/To

Flag

SF

SD Nog

Phoe

Sac

Mon

LV

Bar

LA

Port

Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SLC

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

From/To

Flag

SF

SD Nog

Phoe

Sac

Mon

LV

Bar

LA

Port

Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

SLC

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

(This closed walk has
length nine and visits
nine different cities.)

From/To

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SF

SF

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

SF, Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

LA

SF, Sac, LA

Port

Sea But

SLC

Mon

LV

Bar Flag

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

SF, Sac, LA, Phoe

Port

Sea But

SLC

Mon

LV

Bar

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

Flag

SF, Sac, LA, Phoe, Flag

Port

Sea But

SLC

Mon

LV

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar

Port

Sea But

SLC

Mon

LV

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LA

Port

Sea But

SLC

Mon

LV

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LA

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LA

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LA

(A walk, not a path.)

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LA

(This walk has length
six.)

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac

Sac

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Sac, SLC

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port, Sac

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port, Sac, SLC

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port, Sac, SLC, Port

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port, Sac, SLC, Port, Sac

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

Sac, SLC, Port, Sac, SLC, Port, Sac

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

Sac, SLC, Port, Sac, SLC, Port, Sac

(A closed walk,
not a cycle.)

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

Sac, SLC, Port, Sac, SLC, Port, Sac

(This closed walk
has length 6.)

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

What is the length
of the longest

walk in this graph?
Path in this graph?

Closed walk?
Cycle?

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

(Barstow isn’t reachable
from SF after these road

closures.)

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

(This graph is not
connected.)

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A connected component (or
CC) of G is a maximal set of
mutually reachable nodes.

Fun Facts

● Here’s a collection of useful facts about graphs that
you can take as a given.
● Theorem: If G = (V, E) is a graph and u, v ∈ V, then there is

a path from u to v if and only if there’s a walk from u to v.
● Theorem: If G is a graph and C is a cycle in G, then C’s

length is at least three and C contains at least three nodes.
● Theorem: If G = (V, E) is a graph, then every node in V

belongs to exactly one connected component of G.
● Theorem: If G = (V, E) is a graph, then G is connected if

and only if G has exactly one connected component.
● Looking for more practice working with formal

definitions? Prove these results!

Time-Out for Announcements!

Problem Set 1 Graded

Pro tips when reading a grading distribution:

1. Standard deviations are malicious lies. Ignore them.
2. The average score is a malicious lie. Ignore it.
3. Raw scores are malicious lies. Ignore them.

75th Percentile: 44/49

50th Percentile: 40/49

25th Percentile: 30/49

Problem Set 1 Graded

“Great job! Look over your feedback
for some tips on how to tweak things

for next time.”

75th Percentile: 44/49

50th Percentile: 40/49

25th Percentile: 30/49

Problem Set 1 Graded

“You’re almost there! Review the
feedback on your submission and see

what to focus on for next time.”

75th Percentile: 44/49

50th Percentile: 40/49

25th Percentile: 30/49

Problem Set 1 Graded

“Looks like something hasn’t quite clicked yet. Review your feedback and ask
us questions when you have them. Get in touch with us and stop by office

hours to get some extra feedback and advice. Don’t get discouraged – you can
do this!”

75th Percentile: 44/49

50th Percentile: 40/49

25th Percentile: 30/49

Problem Set Three

● Problem Set Two was due today at
5:30PM.

● Problem Set Three goes out today. It’s
due next Friday at 5:30PM.

● As always, ping us if you need help
working on this one: post on EdStem or
stop by office hours.

Preparing for the Exam

● We’ve posted a “Preparing for the Exam”
page on the course website with full
details and logistics.

● It also includes advice from former
CS103 students about how to do well
here.

● Check it out – there are tons of goodies
there!

Practice Midterms

● We’ve also posted two practice midterms. These
midterms were from the previous summer quarters,
so they should approximate the difficulty and
structure of the upcoming midterm.

● Our recommendation:
● Sometime during week 4, sit down and take Practice

Midterm 1 as if it were the actual exam.
● Identify any gaps in your understanding, and

supplement with the extra practice problems as needed.
● Sometime during week 5 (before the real exam), sit

down and take Practice Midterm 2.
● Please do not read the solutions to a problem until you

have worked through it.

Back to CS103!

Independent Sets and Vertex Covers

Two Motivating Problems

Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.

Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.

Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.

Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.

Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.

Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.

Place park rangers in these forest trails so that
a hiker anywhere on a trail can see a park ranger.

 Choose at least one endpoint of each edge.

 Choose at least one endpoint of each edge.

 Choose at least one endpoint of each edge.

 Choose at least one endpoint of each edge.

Vertex Covers

● Let G = (V, E) be an undirected graph. A vertex
cover of G is a set C ⊆ V such that the following
statement is true:

∀x ∈ V. ∀y ∈ V. ({x, y} ∈ E → (x ∈ C ∨ y ∈ C))

(“Every edge has at least one endpoint in C.”)
● Intuitively speaking, a vertex cover is a set formed

by picking at least one endpoint of each edge in the
graph.

● Vertex covers have applications to placing
streetlights/benches/security guards, as well as in
gene sequencing, machine learning, and
combinatorics.

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.

Set up nests for the California condor. Condors are
territorial and won’t nest if they can see other condors.

 Choose a set of nodes, no two of which are adjacent.

Independent Sets

● If G = (V, E) is an (undirected) graph,
then an independent set in G is a set
I ⊆ V such that

∀u ∈ I. ∀v ∈ I. {u, v} ∉ E.

(“No two nodes in I are adjacent.”)
● Independent sets have applications to

resource optimization, conflict
minimization, error-correcting codes,
cryptography, and more.

A Connection

 Independent sets and vertex covers are related.

 Independent sets and vertex covers are related.

+

꩜

+ +

+ ꩜

꩜

꩜ +

+

꩜

+

+

■ What’s special about
■ the square (꩜) nodes?

■ What’s special about
■ the plus (+) nodes?

Theorem: Let G = (V, E) be a graph and
let C ⊆ V be a set. Then C is a vertex cover of G if

and only if V – C is an independent set in G.

+

+

꩜ +

꩜ +

+

+ ꩜

꩜

꩜

꩜

+

■ What’s special about
■ the square (꩜) nodes?

■ What’s special about
■ the plus (+) nodes?

∀x ∈ V – C.

 ∀y ∈ V – C.

 {x, y} ∉ E.

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be
a set. If C is a vertex cover of G, then

V – C is an independent set in G.
What We’re Assuming What We Need To Show

G is a graph.

C is a vertex cover of G.

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E →
 u ∈ C ∨ v ∈ C
)

V – C is an independent set in G.

∀x ∈ V – C.

 ∀y ∈ V – C.

 {x, y} ∉ E.

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be
a set. If C is a vertex cover of G, then

V – C is an independent set in G.
What We’re Assuming What We Need To Show

G is a graph.

C is a vertex cover of G.

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E →
 u ∈ C ∨ v ∈ C
)

V – C is an independent set in G.

We’re assuming a universally-
quantified statement. That means
we don’t do anything right now

and instead wait for an edge to
present itself.

We need to prove a universally-
quantified statement. We’ll ask

the reader to pick arbitrary
choices of x and y for us to work

with.

∀x ∈ V – C.

 ∀y ∈ V – C.

 {x, y} ∉ E.

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be
a set. If C is a vertex cover of G, then

V – C is an independent set in G.
What We’re Assuming What We Need To Show

G is a graph.

C is a vertex cover of G.

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E →
 u ∈ C ∨ v ∈ C
)

V – C is an independent set in G.

We need to prove a universally-
quantified statement. We’ll ask

the reader to pick arbitrary
choices of x and y for us to work

with.

∀x ∈ V – C.

 ∀y ∈ V – C.

 {x, y} ∉ E.

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be
a set. If C is a vertex cover of G, then

V – C is an independent set in G.
What We’re Assuming What We Need To Show

G is a graph.

C is a vertex cover of G.

∀u ∈ V. ∀v ∈ V. ({u, v} ∈ E →
 u ∈ C ∨ v ∈ C
)

V – C is an independent set in G.

x ∈ V – C.

y ∈ V – C.

∀x ∈ V – C.

 ∀y ∈ V – C.

x ∈ V – C.

y ∈ V – C.
x y

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is a vertex cover of G, then V – C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V – C is an independent set of G. To do so, pick any
nodes x, y ∈ V – C; we will show that {x, y} ∉ E.

Suppose for the sake of contradiction that {x, y} ∈ E.
Because x, y ∈ V – C, we know that x ∉ C and y ∉ C.
However, since C is a vertex cover of G and {x, y} ∈ E,
we also see that x ∈ C or y ∈ C, contradicting our
previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} ∉ E, as required. ■

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is a vertex cover of G, then V – C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V – C is an independent set of G. To do so, pick any
nodes x, y ∈ V – C; we will show that {x, y} ∉ E.

Suppose for the sake of contradiction that {x, y} ∈ E.
Because x, y ∈ V – C, we know that x ∉ C and y ∉ C.
However, since C is a vertex cover of G and {x, y} ∈ E,
we also see that x ∈ C or y ∈ C, contradicting our
previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} ∉ E, as required. ■

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is a vertex cover of G, then V – C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V – C is an independent set of G. To do so, pick any
nodes x, y ∈ V – C; we will show that {x, y} ∉ E.

Suppose for the sake of contradiction that {x, y} ∈ E.
Because x, y ∈ V – C, we know that x ∉ C and y ∉ C.
However, since C is a vertex cover of G and {x, y} ∈ E,
we also see that x ∈ C or y ∈ C, contradicting our
previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} ∉ E, as required. ■

There’s no need to
introduce G or C here.

That’s done in the statement
of the lemma itself.

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is a vertex cover of G, then V – C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V – C is an independent set of G. To do so, pick any
nodes x, y ∈ V – C; we will show that {x, y} ∉ E.

Suppose for the sake of contradiction that {x, y} ∈ E.
Because x, y ∈ V – C, we know that x ∉ C and y ∉ C.
However, since C is a vertex cover of G and {x, y} ∈ E,
we also see that x ∈ C or y ∈ C, contradicting our
previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} ∉ E, as required. ■

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is a vertex cover of G, then V – C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V – C is an independent set of G. To do so, pick any
nodes x, y ∈ V – C; we will show that {x, y} ∉ E.

Suppose for the sake of contradiction that {x, y} ∈ E.
Because x, y ∈ V – C, we know that x ∉ C and y ∉ C.
However, since C is a vertex cover of G and {x, y} ∈ E,
we also see that x ∈ C or y ∈ C, contradicting our
previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} ∉ E, as required. ■

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is a vertex cover of G, then V – C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V – C is an independent set of G. To do so, pick any
nodes x, y ∈ V – C; we will show that {x, y} ∉ E.

Suppose for the sake of contradiction that {x, y} ∈ E.
Because x, y ∈ V – C, we know that x ∉ C and y ∉ C.
However, since C is a vertex cover of G and {x, y} ∈ E,
we also see that x ∈ C or y ∈ C, contradicting our
previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} ∉ E, as required. ■

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is a vertex cover of G, then V – C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V – C is an independent set of G. To do so, pick any
nodes x, y ∈ V – C; we will show that {x, y} ∉ E.

Suppose for the sake of contradiction that {x, y} ∈ E.
Because x, y ∈ V – C, we know that x ∉ C and y ∉ C.
However, since C is a vertex cover of G and {x, y} ∈ E,
we also see that x ∈ C or y ∈ C, contradicting our
previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} ∉ E, as required. ■

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is a vertex cover of G, then V – C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V – C is an independent set of G. To do so, pick any
nodes x, y ∈ V – C; we will show that {x, y} ∉ E.

Suppose for the sake of contradiction that {x, y} ∈ E.
Because x, y ∈ V – C, we know that x ∉ C and y ∉ C.
However, since C is a vertex cover of G and {x, y} ∈ E,
we also see that x ∈ C or y ∈ C, contradicting our
previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} ∉ E, as required. ■

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is a vertex cover of G, then V – C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V – C is an independent set of G. To do so, pick any
nodes x, y ∈ V – C; we will show that {x, y} ∉ E.

Suppose for the sake of contradiction that {x, y} ∈ E.
Because x, y ∈ V – C, we know that x ∉ C and y ∉ C.
However, since C is a vertex cover of G and {x, y} ∈ E,
we also see that x ∈ C or y ∈ C, contradicting our
previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} ∉ E, as required. ■

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is a vertex cover of G, then V – C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V – C is an independent set of G. To do so, pick any
nodes x, y ∈ V – C; we will show that {x, y} ∉ E.

Suppose for the sake of contradiction that {x, y} ∈ E.
Because x, y ∈ V – C, we know that x ∉ C and y ∉ C.
However, since C is a vertex cover of G and {x, y} ∈ E,
we also see that x ∈ C or y ∈ C, contradicting our
previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} ∉ E, as required. ■

Lemma 1: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is a vertex cover of G, then V – C is an
independent set of G.

Proof: Assume C is a vertex cover of G. We need to show
that V – C is an independent set of G. To do so, pick any
nodes x, y ∈ V – C; we will show that {x, y} ∉ E.

Suppose for the sake of contradiction that {x, y} ∈ E.
Because x, y ∈ V – C, we know that x ∉ C and y ∉ C.
However, since C is a vertex cover of G and {x, y} ∈ E,
we also see that x ∈ C or y ∈ C, contradicting our
previous statement.

We’ve reached a contradiction, so our assumption was
wrong. Therefore, we have {x, y} ∉ E, as required. ■

Taking Negations

● What is the negation of this statement,
which says “C is a vertex cover?”

● This says “there is an edge where both
endpoints aren’t in C.”

∀u ∈ C. ∀v ∈ C. ({u, v} ∈ E →
 u ∈ C ∨ v ∈ C
)

Respond at pollev.com/zhenglian740

Taking Negations

● What is the negation of this statement,
which says “C is a vertex cover?”

● This says “there is an edge where both
endpoints aren’t in C.”

¬∀u ∈ C. ∀v ∈ C. ({u, v} ∈ E →
 u ∈ C ∨ v ∈ C
)

Taking Negations

● What is the negation of this statement,
which says “C is a vertex cover?”

● This says “there is an edge where both
endpoints aren’t in C.”

∃u ∈ C. ¬∀v ∈ C. ({u, v} ∈ E →
 u ∈ C ∨ v ∈ C
)

Taking Negations

● What is the negation of this statement,
which says “C is a vertex cover?”

● This says “there is an edge where both
endpoints aren’t in C.”

∃u ∈ C. ∃v ∈ C. ¬({u, v} ∈ E →
 u ∈ C ∨ v ∈ C
)

Taking Negations

● What is the negation of this statement,
which says “C is a vertex cover?”

● This says “there is an edge where both
endpoints aren’t in C.”

∃u ∈ C. ∃v ∈ C. ({u, v} ∈ E ∧
¬(u ∈ C ∨ v ∈ C)
)

Taking Negations

● What is the negation of this statement,
which says “C is a vertex cover?”

● This says “there is an edge where both
endpoints aren’t in C.”

∃u ∈ C. ∃v ∈ C. ({u, v} ∈ E ∧
 u ∉ C ∧ v ∉ C
)

Taking Negations

● What is the negation of this statement,
which says “C is a vertex cover?”

● This says “there is an edge where both
endpoints aren’t in C.”

∃u ∈ C. ∃v ∈ C. ({u, v} ∈ E ∧
 u ∉ C ∧ v ∉ C
)

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be
a set. If C is not a vertex cover of G, then

V – C is not an independent set in G.
What We’re Assuming What We Need To Show

G is a graph.

C is a not a vertex cover of G.

∃u ∈ V. ∃v ∈ V. ({u, v} ∈ E ∧
 u ∉ C ∧ v ∉ C
)

V – C is not an ind. set in G.

∃x ∈ V – C.

 ∃y ∈ V – C.

 {x, y} ∈ E.

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be
a set. If C is not a vertex cover of G, then

V – C is not an independent set in G.
What We’re Assuming What We Need To Show

G is a graph.

C is a not a vertex cover of G.

∃u ∈ V. ∃v ∈ V. ({u, v} ∈ E ∧
 u ∉ C ∧ v ∉ C
)

V – C is not an ind. set in G.

∃x ∈ V – C.

 ∃y ∈ V – C.

 {x, y} ∈ E.

We’re assuming an existentially-quantified
statement, so we’ll immediately introduce

variables u and v.

We’re proving an existentially-quantified
statement, so we don’t introduce variables

x and y. We’re on a scavenger hunt!

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be
a set. If C is not a vertex cover of G, then

V – C is not an independent set in G.
What We’re Assuming What We Need To Show

G is a graph.

C is a not a vertex cover of G.

V – C is not an ind. set in G.

∃x ∈ V – C.

 ∃y ∈ V – C.

 {x, y} ∈ E.

We’re assuming an existentially-quantified
statement, so we’ll immediately introduce

variables u and v.

 u ∈ V – C.

 v ∈ V – C.

 {u, v} ∈ E.

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be
a set. If C is not a vertex cover of G, then

V – C is not an independent set in G.
What We’re Assuming What We Need To Show

G is a graph.

C is a not a vertex cover of G.

V – C is not an ind. set in G.

∃x ∈ V – C.

 ∃y ∈ V – C.

 {x, y} ∈ E.

Any ideas about what
we should pick x and

y to be?

 u ∈ V – C.

 v ∈ V – C.

 {u, v} ∈ E.

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is not a vertex cover of G, then V – C is not an
independent set of G.

Proof: Assume C is not a vertex cover of G. We need to
show that V – C is not an independent set of G.

Since C is not a vertex cover of G, we know that there
exists nodes x, y ∈ V where {x, y} ∈ E, where x ∉ C, and
where y ∉ C. Because x ∈ V and x ∉ C, we know that
x ∈ V – C. Similarly, we see that y ∈ V – C.

This means that {x, y} ∈ E, that x ∈ V – C, and that
y ∈ V – C, and therefore that V – C is not an independent
set of G, as required. ■

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is not a vertex cover of G, then V – C is not an
independent set of G.

Proof: Assume C is not a vertex cover of G. We need to
show that V – C is not an independent set of G.

Since C is not a vertex cover of G, we know that there
exists nodes x, y ∈ V where {x, y} ∈ E, where x ∉ C, and
where y ∉ C. Because x ∈ V and x ∉ C, we know that
x ∈ V – C. Similarly, we see that y ∈ V – C.

This means that {x, y} ∈ E, that x ∈ V – C, and that
y ∈ V – C, and therefore that V – C is not an independent
set of G, as required. ■

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is not a vertex cover of G, then V – C is not an
independent set of G.

Proof: Assume C is not a vertex cover of G. We need to
show that V – C is not an independent set of G.

Since C is not a vertex cover of G, we know that there
exists nodes x, y ∈ V where {x, y} ∈ E, where x ∉ C, and
where y ∉ C. Because x ∈ V and x ∉ C, we know that
x ∈ V – C. Similarly, we see that y ∈ V – C.

This means that {x, y} ∈ E, that x ∈ V – C, and that
y ∈ V – C, and therefore that V – C is not an independent
set of G, as required. ■

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is not a vertex cover of G, then V – C is not an
independent set of G.

Proof: Assume C is not a vertex cover of G. We need to
show that V – C is not an independent set of G.

Since C is not a vertex cover of G, we know that there
exists nodes x, y ∈ V where {x, y} ∈ E, where x ∉ C, and
where y ∉ C. Because x ∈ V and x ∉ C, we know that
x ∈ V – C. Similarly, we see that y ∈ V – C.

This means that {x, y} ∈ E, that x ∈ V – C, and that
y ∈ V – C, and therefore that V – C is not an independent
set of G, as required. ■

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is not a vertex cover of G, then V – C is not an
independent set of G.

Proof: Assume C is not a vertex cover of G. We need to
show that V – C is not an independent set of G.

Since C is not a vertex cover of G, we know that there
exists nodes x, y ∈ V where {x, y} ∈ E, where x ∉ C, and
where y ∉ C. Because x ∈ V and x ∉ C, we know that
x ∈ V – C. Similarly, we see that y ∈ V – C.

This means that {x, y} ∈ E, that x ∈ V – C, and that
y ∈ V – C, and therefore that V – C is not an independent
set of G, as required. ■

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is not a vertex cover of G, then V – C is not an
independent set of G.

Proof: Assume C is not a vertex cover of G. We need to
show that V – C is not an independent set of G.

Since C is not a vertex cover of G, we know that there
exists nodes x, y ∈ V where {x, y} ∈ E, where x ∉ C, and
where y ∉ C. Because x ∈ V and x ∉ C, we know that
x ∈ V – C. Similarly, we see that y ∈ V – C.

This means that {x, y} ∈ E, that x ∈ V – C, and that
y ∈ V – C, and therefore that V – C is not an independent
set of G, as required. ■

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is not a vertex cover of G, then V – C is not an
independent set of G.

Proof: Assume C is not a vertex cover of G. We need to
show that V – C is not an independent set of G.

Since C is not a vertex cover of G, we know that there
exists nodes x, y ∈ V where {x, y} ∈ E, where x ∉ C, and
where y ∉ C. Because x ∈ V and x ∉ C, we know that
x ∈ V – C. Similarly, we see that y ∈ V – C.

This means that {x, y} ∈ E, that x ∈ V – C, and that
y ∈ V – C, and therefore that V – C is not an independent
set of G, as required. ■

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is not a vertex cover of G, then V – C is not an
independent set of G.

Proof: Assume C is not a vertex cover of G. We need to
show that V – C is not an independent set of G.

Since C is not a vertex cover of G, we know that there
exists nodes x, y ∈ V where {x, y} ∈ E, where x ∉ C, and
where y ∉ C. Because x ∈ V and x ∉ C, we know that
x ∈ V – C. Similarly, we see that y ∈ V – C.

This means that {x, y} ∈ E, that x ∈ V – C, and that
y ∈ V – C, and therefore that V – C is not an independent
set of G, as required. ■

Lemma 2: Let G = (V, E) be a graph and let C ⊆ V be a
set. If C is not a vertex cover of G, then V – C is not an
independent set of G.

Proof: Assume C is not a vertex cover of G. We need to
show that V – C is not an independent set of G.

Since C is not a vertex cover of G, we know that there
exists nodes x, y ∈ V where {x, y} ∈ E, where x ∉ C, and
where y ∉ C. Because x ∈ V and x ∉ C, we know that
x ∈ V – C. Similarly, we see that y ∈ V – C.

This means that {x, y} ∈ E, that x ∈ V – C, and that
y ∈ V – C, and therefore that V – C is not an independent
set of G, as required. ■

Recap for Today

● A graph is a structure for representing items
that may be linked together. Digraphs
represent that same idea, but with a
directionality on the links.

● Graphs can’t have self-loops; digraphs can.
● Vertex covers and independent sets are

useful tools for modeling problems with
graphs.

● The complement of a vertex cover is an
independent set, and vice-versa.

Next Time

● The Pigeonhole Principle
● A simple, powerful, versatile theorem.

● Graph Theory Party Tricks
● Applying math to graphs of people!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164

